Solid Oxide Fuel Cell/GT Hybrid Locomotive

National Fuel Cell Research Center

University of California, Irvine http://www.nfcrc.uci.edu

Scott Samuelsen April 11, 2013

FUEL CELL/GAS TURBINE HYBRID

FUEL CELL/GAS TURBINE HYBRID

© 2013 National Fuel Cell Research Center

FUEL CELL/GAS TURBINE HYBRID

Aircraft

© 2013 National Fuel Cell Research Center

HYBRID FC/GT

6/15

© 2013 National Fuel Cell Research Center

WHY THE SOFC-GT HYBRID?

• Diesel-Electric Locomotive Engine

- Efficiency less than 30%
- NO_x and PM_{2.5} Emissions are high
- Emissions concentrated in areas local to rail operations

• Diesel-Electric Locomotive Operation

- High noise levels onboard and near rail operations

• SOFC-GT Hybrid Locomotive Engine

- Potential to address major concerns associated with diesel-electric
- Efficiency greater than 60%
- Virtually-Zero criteria pollutant emission levels
- Low operating noise levels

MAIN GOALS

Determine

- The technical feasibility of an SOFC-GT locomotive engine
- The hurdles, and identify, analyze, and provide solutions
- Operating requirements for diesel fuel, natural gas, and hydrogen

Evaluate

Performance over a demanding, but realistic duty cycle

Collaborate

- Funding agencies: Air Resources Board, South Coast AQMD
- Industry: Union Pacific, General Electric

PROPOSED SYSTEM

• Baseline Diesel-Electric Locomotive Engine

- GE AC4400CW: Previous generation but widely used
- GE ES44AC: Current state-of-the-art
- Both 3355 kW of power (4500 hp)

• SOFC-GT Hybrid Locomotive Engine

- SOFC: 3.0 MW — GT: 0.5 MW

© 2013 National Fuel Cell Research Center

SYSTEM SIZE EVALUATION

	Footprint (m²)	Volume (m³)
Total Diesel-Electric System	~11	753
SOFC	2.70	13.55
GT	9.02	21.74
Fuel Handling	3.16	7.74
Total SOFC-GT System	14.88	43.03

© 2013 National Fuel Cell Research Center

PERFORMANCE

PERFORMANCE

© 2013 National Fuel Cell Research Center

PERFORMANCE

28%

13%

6% 3% 4%

Idle

One

Two

Three

Four

Five

Six

Seven

Eight

NFCRC

© 2013 National Fuel Cell Research Center

13/15

SUMMARY

• SOFC-GT engine fits within the confines of a locomotive

Diesel-Fuel Powered

Average system efficiency:
 CO₂ reduction:
 NO_x reduction:
 97.7%

Natural Gas-Fuel Powered

Average system efficiency: 60%
 CO₂ reduction: 53.8%
 NO_x reduction: 97.7%

Hydrogen-Fuel Powered

Average system efficiency: 58%
 CO₂ reduction: 100%
 NO_x reduction: 100%

14/15

© 2013 National Fuel Cell Research Center

SUMMARY

· State of the technology

- Proof of concept completed (Phase I)
- Next step is a prototype test (Phase II)

· Challenges or barriers to commercialization

- R/D funding to undertake and complete a prototype test (Phase II)
- R/D funding for component and system optimization (Phase III)

• Timeline for commercialization for the technology

- Ten years with completion of Phase II and Phase III in a timely fashion

Solid Oxide Fuel Cell/GT Hybrid Locomotive

National Fuel Cell Research Center

University of California, Irvine http://www.nfcrc.uci.edu

Scott Samuelsen April 11, 2013

15/